Package: missCompare 1.0.3

missCompare: Intuitive Missing Data Imputation Framework

Offers a convenient pipeline to test and compare various missing data imputation algorithms on simulated and real data. These include simpler methods, such as mean and median imputation and random replacement, but also include more sophisticated algorithms already implemented in popular R packages, such as 'mi', described by Su et al. (2011) <doi:10.18637/jss.v045.i02>; 'mice', described by van Buuren and Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>; 'missForest', described by Stekhoven and Buhlmann (2012) <doi:10.1093/bioinformatics/btr597>; 'missMDA', described by Josse and Husson (2016) <doi:10.18637/jss.v070.i01>; and 'pcaMethods', described by Stacklies et al. (2007) <doi:10.1093/bioinformatics/btm069>. The central assumption behind 'missCompare' is that structurally different datasets (e.g. larger datasets with a large number of correlated variables vs. smaller datasets with non correlated variables) will benefit differently from different missing data imputation algorithms. 'missCompare' takes measurements of your dataset and sets up a sandbox to try a curated list of standard and sophisticated missing data imputation algorithms and compares them assuming custom missingness patterns. 'missCompare' will also impute your real-life dataset for you after the selection of the best performing algorithm in the simulations. The package also provides various post-imputation diagnostics and visualizations to help you assess imputation performance.

Authors:Tibor V. Varga [aut, cre], David Westergaard [aut]

missCompare_1.0.3.tar.gz
missCompare_1.0.3.zip(r-4.5)missCompare_1.0.3.zip(r-4.4)missCompare_1.0.3.zip(r-4.3)
missCompare_1.0.3.tgz(r-4.4-any)missCompare_1.0.3.tgz(r-4.3-any)
missCompare_1.0.3.tar.gz(r-4.5-noble)missCompare_1.0.3.tar.gz(r-4.4-noble)
missCompare_1.0.3.tgz(r-4.4-emscripten)missCompare_1.0.3.tgz(r-4.3-emscripten)
missCompare.pdf |missCompare.html
missCompare/json (API)
NEWS

# Install 'missCompare' in R:
install.packages('missCompare', repos = c('https://tirgit.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tirgit/misscompare/issues

Datasets:

On CRAN:

comparisoncomparison-benchmarksimputationimputation-algorithmimputation-methodsimputationskolmogorov-smirnovmissingmissing-datamissing-data-imputationmissing-status-checkmissing-valuesmissingnesspost-imputation-diagnosticsrmse

5.89 score 39 stars 40 scripts 343 downloads 1 mentions 27 exports 165 dependencies

Last updated 4 years agofrom:d5a092bcda. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-winOKNov 23 2024
R-4.5-linuxOKNov 23 2024
R-4.4-winOKNov 23 2024
R-4.4-macOKNov 23 2024
R-4.3-winOKNov 23 2024
R-4.3-macOKNov 23 2024

Exports:all_patternscleanget_dataimpute_dataimpute_simulatedMAPMARMCARMNARpost_imp_diagsimulatetest_AmeliaIItest_aregImputetest_kNNtest_mean_imptest_median_imptest_mitest_mice_mixedtest_missForesttest_missMDA_EMtest_missMDA_regtest_pcaMethods_BPCAtest_pcaMethods_Nipalstest_pcaMethods_NLPCAtest_pcaMethods_PPCAtest_pcaMethods_svdImputetest_random_imp

Dependencies:abindadmiscAmeliaarmbackportsbase64encBiobaseBiocGenericsbitbit64bootbroombslibcachemcarcarDatacheckmateclassclicliprclustercodacodetoolscolorspacecowplotcpp11crayoncrosstalkdata.tableDEoptimRDerivdigestdoBydoParalleldoRNGdplyrDTe1071ellipseemmeansestimabilityevaluateexpmFactoMineRfansifarverfastmapflashClustfontawesomeforcatsforeachforeignFormulafsgenericsggdendroggplot2ggrepelglmnetgluegridExtragtablehavenhighrHmischmshtmlTablehtmltoolshtmlwidgetshttpuvisobanditeratorsitertoolsjomojquerylibjsonliteknitrlabelinglaekenlaterlatticelazyevalleapslifecyclelme4lmtestltmmagrittrMASSMatrixMatrixModelsmemoisemgcvmimicemicrobenchmarkmimeminqamissForestmissMDAmitmlmodelrmsmmultcompViewmunsellmvtnormnlmenloptrnnetnumDerivordinalpanpbkrtestpcaMethodspillarpkgconfigplyrpolycorprettyunitsprogresspromisesproxypurrrquantregR6randomForestrangerrappdirsRColorBrewerRcppRcppArmadilloRcppEigenreadrrlangrmarkdownrngtoolsrobustbaserpartrstudioapisassscalesscatterplot3dshapespSparseMstringistringrsurvivaltibbletidyrtidyselecttinytextzdbucminfutf8vcdvctrsVIMviridisviridisLitevroomwithrxfunyamlzoo

A complete tutorial to missCompare

Rendered frommisscompare.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2019-02-22
Started: 2018-08-16

Readme and manuals

Help Manual

Help pageTopics
Missing data spike-in in various missing data patternsall_patterns
Dataframe cleaning for missing data handlingclean
Clinical dataset with missingnessclindata_miss
Extraction of metadata from dataframesget_data
Missing data imputation with various methodsimpute_data
Imputation algorithm tester on simulated dataimpute_simulated
Missing data spike-in in MAP patternMAP
Missing data spike-in in MAR patternMAR
Missing data spike-in in MCAR patternMCAR
'missCompare': Missing Data Imputation Comparison FrameworkmissCompare
Missing data spike-in in MNAR patternMNAR
Post imputation diagnosticspost_imp_diag
Simulation of matrix with no missingnesssimulate
Testing the 'Amelia II' missing data imputation algorithmtest_AmeliaII
Testing the 'Hmisc' aregImpute missing data imputation algorithmtest_aregImpute
Testing the 'VIM' kNN missing data imputation algorithmtest_kNN
Testing the mean imputation algorithmtest_mean_imp
Testing the median imputation algorithmtest_median_imp
Testing the 'mi' missing data imputation algorithmtest_mi
Testing the 'mice' mixed missing data imputation algorithmtest_mice_mixed
Testing the 'missForest' missing data imputation algorithmtest_missForest
Testing the 'missMDA' EM missing data imputation algorithmtest_missMDA_EM
Testing the 'missMDA' regularized missing data imputation algorithmtest_missMDA_reg
Testing the 'pcaMethods' BPCA missing data imputation algorithmtest_pcaMethods_BPCA
Testing the 'pcaMethods' NIPALS missing data imputation algorithmtest_pcaMethods_Nipals
Testing the 'pcaMethods' NLPCA missing data imputation algorithmtest_pcaMethods_NLPCA
Testing the 'pcaMethods' PPCA missing data imputation algorithmtest_pcaMethods_PPCA
Testing the 'pcaMethods' svdImpute missing data imputation algorithmtest_pcaMethods_svdImpute
Testing the random replacement imputation algorithmtest_random_imp